Rx for Success: The Game-Changing Role of Pharmacists in Diabetes Quality Measures

Tyler D. Wagner, Pharm.D., Ph.D. Associate Director of Research National Pharmaceutical Council (NPC)

Disclosures

1. I am a person who stutters.

- All research presented was conducted while attaining my Ph.D. at Virginia Commonwealth University and was supported in part by a grant from the American Foundation for Pharmacy Education (AFPE).
- 3. The research and findings presented in this document are solely the outcome of academic inquiry and are in no way associated with or influenced by my professional role at the National Pharmaceutical Council (NPC).

Setting the stage

Background – Primary Care in the United States

Background – Pharmacist Role in Chronic Disease Management

Numerous randomized control trials (RCTs) have shown that through involvement of pharmacists in the patient care team for chronic disease management, physician/pharmacist collaborations have led to:

Santschi et al. 2014.

compared to usual care.

BP: Blood Pressure; DM: Diabetes; 5

Background – Pharmacist Role in Chronic Disease Management

Can be **highly variable**. Logistics and <u>scope of practice</u> are defined in state level legislation.

August 17, 2023, <u>Delaware</u> became the 50th state pass legislation that allows pharmacists and physicians to enter into CPAs w/ **drug therapy management** services.

Background – Pharmacist Role in Chronic Disease Management

Collaborative Practice Agreements (CPA)

Goal: to improve blood pressure (BP) control.

Cluster-randomized; 9-month RPh vs. 24-month RPh vs. usual care

RPh Intervention: Care plan creation for patients, drug therapy <u>recommendations</u>

Edelman et al. 2010.

Goal: to improve blood pressure (BP) and blood glucose + HbA1c.

Patients at the VA, group medical clinic intervention vs. usual care

RPh Intervention: Care plan creation for patients, drug therapy <u>changes</u>, lifestyle modifications

Background – Quality Metrics in United States

Quality Measures?

Optimal patient and population health outcomes guide reimbursement by payers to health care systems by the achievement of preestablished performance measures.

Relate to many chronic conditions

NCQA: National Committee for Quality Assurance; HEDIS: Healthcare effectiveness data and information set; CMS: Centers for Medicare & Medicaid Services; ⁸

Background – Quality Metrics in Virginia

Goal	Measure HEDIS: Comprehensive Diabetes Care	2016 Baseline Rate (%)	2019 Aggregate Rate* (%)
Comprehensive management of	Hemoglobin A1c (HbA1c) Testing	87.37	86.33
diabetes	HbA1c Poor Control (>9.0%):	40.76	50.94
Virginia <u>Medicaid</u>	HbA1c Control (<8.0%):	51.87	41.47
	Eye Exam (Retinal) Performed:	55.05	45.48
	Medical Attention for Nephropathy	91.52	88.15
	Blood Pressure Control (<140/90 mm Hg)	59.47	50.44

* To track the progress of achieving the goals and objectives outlined in the 2017–2019 Quality Strategy, DMAS tracked the aggregate annual results of contractual performance metrics that aligned with the performance measures included in the Quality Strategy to measure improvement.

Artificial Intelligence in Health Care

Better decision intelligence, providing data on **best** medication for the **right** patient.

Artificial Intelligence in Health Care

VCU School of Pharmacy

CE Question #1

Which of the following best describes the role of a pharmacist under a Collaborative Practice Agreement (CPA) within an interprofessional health care team?

- A) The pharmacist is only responsible for dispensing medications as prescribed by physicians and has no role in patient management.
- B) The pharmacist can initiate, modify, or discontinue medication therapy for a patient in accordance with the CPA, allowing for a more integrated role in the patient's health care.
- C) The pharmacist exclusively manages insurance claims and billing, without direct involvement in patient care.
- D) The pharmacist is responsible for diagnosing medical conditions and directly treating patients without the need for a physician's approval.

Discuss role delineation for pharmacists on the 12 interprofessional health care team.

Aim – To assess quality measure achievement among patients who received clinical pharmacy services and those who did not.

Retrospective, observational, cohort study Electronic health record (EHR) data from outpatient clinics of a medical group in VA Dataset was **Propensity Score Matched** (1:2) CG: Standard Care IG: Standard Care + Pharmacist

Methods – Inclusion Criteria

New patients seen by a pharmacist at a local health system's primary care clinics

Time period: Jan. 1, 2019, to Dec. 31, 2019

Received **Disease state management** (Diabetes)

Performed under a **CPA**, Includes medication management, access, education. Patient had to receive a physician referral.

New patients who received care at one of the comparator group clinics (no pharmacist)

Time period: Jan. 1, 2019, to Dec. 31, 2019

Recorded measurement for HbA1c \ge 7% at any point during the study period.

Propensity Score Matching Results, Diabetes Subset

Variable	Intervention Group	Comparator Group	Standardized Difference	P value	Intervention Group	Comparator Group	Standardized Difference	P value
	Pre-N	latch			1:2 Match			
Number of Patients	464	2,200			431	832		
Age; mean (SE)	57.8 (0.63)	59.7 (0.30)	-0.14	0.0070	57.5 (0.65)	57.0 (0.47)	0.03	0.6183
Female; n (%)	257 (55.4)	1,132 (51.5)	0.08	0.1232	237 (55.0)	484 (56.2)	-0.02	0.6922
Race								
White; n (%)	221 (47.6)	1,160 (52.7)	-0.10	0.0458	195 (45.2)	391 (45.4)	0.00	0.9685
Black; n (%)	202 (43.5)	841 (38.2)	0.11	0.0333	199 (46.2)	387 (44.9)	-0.03	0.6639
Other; n (%)	41 (8.8)	199 (9.1)	-0.01	0.8862	37 (8.6)	84 (9.7)	0.04	0.4996
Medicare; n (%)	174 (37.5)	940 (42.7)	-0.11	0.0380	159 (36.9)	310 (36.0)	-0.02	0.7435
Commercial; n (%)	172 (37.1)	800 (36.4)	0.01	0.7743	160 (37.1)	327 (37.9)	-0.02	0.7763
Charlson Comorbidity Index; mean (SE)	1.4 (0.04)	1.9 (0.03)	-0.49	<.0001	1.5 (0.03)	1.4 (0.03)	0.10	0.0268
Diabetes; n (%)	431 (92.9)	2,200 (100.0)	-0.39	<.0001	431 (100.0)	862 (100.0)	0.00	-
Number of Medications; mean (SE)	9.8 (0.23)	9.1 (0.10)	0.15	0.0023	10.0 (0.24)	9.6 (0.19)	0.08	0.2217
HbA1c Baseline Value; mean (SE)	9.9 (0.09)	8.6 (0.04)	0.66	<.0001	9.9 (0.09)	9.7 (0.08)	0.11	0.0840

Dataset Overview

Well-balanced (i.e., age, race, sex, insurance status,

disease severity)

23 variables assessed (demographics, comorbidities, lab values)

Diabetes Related Quality Measures

Diabetes Care

Criteria: Adults, 18-75 years of age, diagnosis of diabetes

(1) HbA1c control (<9.0%) by end of the calendar year

(2) HbA1c control (<8.0%) by end of the calendar year

(3) HbA1c control (<7.0%) by end of the calendar year

(4) HbA1c poor control (>9.0%) by end of the calendar year

(5) BP control (<140/90 mmHg) by end of the calendar year *

Results, Diabetes Quality Measures

HbA1c Levels

Comparator Group Intervention Group

* Inverse Measure 18

Results, Diabetes Quality Measures

Goal	Measure HEDIS: Comprehensive Diabetes Care	2019 Aggregate Rate, VA (Medicaid) (%)	2019 Wagner et. al, VA (Medicaid, Medicare, Commercial) (%) Usual Care	2019 Wagner et. al, VA (Medicaid, Medicare, Commercial) (%) Intervention
Comprehensive management of	HbA1c Poor Control* (>9.0%):	50.94	42.37	34.34
diabetes	HbA1c Control (<8.0%):	41.47	38.71	43.94
	Blood Pressure Control (<140/90 mm Hg)	50.44	68.10	73.74

* Inverse Measure; VA: Virginia 19

Logistic Regression (+ Random Effects)

HbA1c Control (<9.0%)

ROC 0.84

Variable	aOR	95% CI
Study Group (ref. CG)	4.17	(2.46, 4.05)
Sex (ref. Females)	1.58	(1.15, 2.19)
Index Date Quarter (Q4 vs. Q1)	0.17	(0.10, 0.30)
Age	1.03	(1.01, 1.05)
# Chronic Medications	0.95	(0.92, 0.98)
Charlson Comorbidity Index	0.76	(0.59, 0.98)
Baseline HbA1c Value	0.54	(0.49, 0.60)
Baseline SBP Value	1.02	(1.00, 1.03)

Only displaying significant results.

Patients who received care with a <u>pharmacist</u> were **4.2 times more likely** to achieve HbA1c Control compared to patients in the comparator group.

320% higher chance

20

Quality Measures are assessed at the end of the calendar year

HbA1c: Hemoglobin A1c, aOR: Adjusted Odds Ratio, CI: Confidence Interval SBP: Systolic Blood Pressure, CG: Comparator Group

Logistic Regression (+ Random Effects)

BP Control (<140/90 mmHg)

ROC 0.76

Variable	aOR	95% CI
Study Group (ref. CG)	1.53	(1.03, 2.27)
Race (Black vs. White)	0.66	(0.49, 0.90)
Index Date Quarter (Q4 vs. Q1)	0.49	(0.31, 0.77)
Baseline SBP Value	0.95	(0.94, 0.96)

Only displaying significant results.

Patients who received care with a <u>pharmacist</u> were **1.5 times more likely** to achieve BP Control compared to patients in the comparator group.

50% higher chance

Quality Measures are assessed at the end of the calendar year

SBP: Systolic Blood Pressure, aOR: Adjusted Odds Ratio, CG: Comparator Group, CI: Confidence Interval

The "So What"

Novel study and scale

• One of the first studies to assess impact of pharmacists on quality measure achievement, specifically at the **end of the calendar year**, in patients with diabetes.

Pharmacist involved care = Higher rate of QM achievement

• Across all quality measures, pharmacist-involved care teams consistently **outperformed** standard care.

Quantifies impact of pharmacists

- Current literature says the same thing "Pharmacists improve diabetes and hypertension control". We assessed this with real-world data and quantified it.
- Patients seen by a pharmacist are **3.8 to 4.8 times** more likely to have HbA1c control (dependent on A1c cutoff).

Examination of other significant covariates

Index Date Quarter

- Assesses **temporal** relationship between when the patient was seen and the end of the year.
- Patients seen in Q4 were 83% less likely to have A1c ≤9% by end of calendar year, compared to patients seen in Q1.

Baseline HbA1c level, comorbidity index, and # of chronic meds matter

- For every 1% increase in the <u>baseline HbA1c</u>, the odds of having HbA1c control **decrease by 46.0%**.
- For every 1 additional <u>chronic medication</u> and <u>CCI score</u> at baseline, the odds of having HbA1c control decrease by 5% and 24%, respectively.

Should providers be penalized for patients who visit their clinic, uncontrolled, late in the year?

Polypharmacy impacts glycemic control

Managing diabetes is complex, patients are more complex

CE Question #2

What factors have been found <u>most important</u> to a patient meeting diabetesrelated quality measures?

- A) Baseline HbA1c measurement
- B) Month/Time in which the patient was first seen
- C) The receipt of care with a physician & pharmacist (interdisciplinary care)
- D) All of the above

CE Question #3

Which of the following best describes the growing role of pharmacists in the context of achieving healthcare quality measures?

- A) Pharmacists primarily focus on dispensing medications and have little to no influence on healthcare quality measures.
- B) Pharmacists are increasingly involved in direct patient care activities, but their impact on healthcare quality measures is yet to be proven.
- C) Pharmacists, through collaborative practice agreements, have shown significant improvements in achieving diabetes-related quality measures.
- D) Pharmacists mainly contribute to healthcare quality measures by ensuring the costeffectiveness of drug therapies.

Review changes in health care delivery that likely 25 impact pharmacy practice.

To build and compare the accuracy of predictive risk models using standard regression and machine learning algorithms.

Random Forest Model

XGBoost Model

Performance on test data

Learning Rate (eta): 0.15 Depth of each tree (max depth): 20 Number of rounds/trees (nround): 55 Logloss: 0.066

Model Tuning

Random Forest Model vs. XGBoost Model

	Variable	Overall (scaled)	Overall (unscaled)
1	HbA1c_baseline_value	100	67.1486
2	index_date_quarter4	44.2072	29.3315
3	study_group	23.8452	15.5299
4	age	8.883	5.3883
5	dbp_baseline_value	5.631	3.1841
6	num_meds	5.4079	3.0329
7	index_date_quarter3	5.0884	2.8163
8	commercial	3.9303	2.0314
9	sbp_baseline_value	3.4075	1.677
10	index_date_quarter2	3.2246	1.553
11	smoking_status2	3.1711	1.5167
12	sex	2.8902	1.3263
13	cc_total	2.7512	1.2321
14	elix_obesity	2.1584	0.8303
15	race2	1.6782	0.5048
16	bp_control_2019	1.4794	0.3701
17	smoking_status3	1.4011	0.317
18	elix_depression	1.3322	0.2703
19	icd_10_chart	0.7773	-0.1058
20	medicare	0.3498	-0.3956

Feature	Gain	Cover	Frequency
HbA1c_baseline_value	0.4111	0.2682	0.1682
sbp_baseline_value	0.0892	0.1010	0.1360
dbp_baseline_value	0.0826	0.0921	0.1272
age	0.0769	0.1221	0.1316
icd_10_chart	0.0634	0.0693	0.0980
num_meds	0.0625	0.0824	0.1046
index_date_quarter4	0.0483	0.0712	0.0137
study_group	0.0416	0.0671	0.0166
sex	0.0137	0.0162	0.0218
index_date_quarter3	0.0114	0.0156	0.0144
race2	0.0114	0.0085	0.0266
commercial	0.0114	0.0067	0.0200
cc_total	0.0109	0.0116	0.0174
smoking_status3	0.0104	0.0090	0.0177
index_date_quarter2	0.0100	0.0115	0.0166
elix_obesity	0.0089	0.0099	0.0140
bp_control_2019	0.0086	0.0053	0.0129
race3	0.0086	0.0127	0.0104
smoking_status2	0.0073	0.0054	0.0107
hypertension	0.0057	0.0054	0.0115
medicare	0.0051	0.0034	0.0074
elix_depression	0.0011	0.0053	0.0026

Discussion

Model	AUC
Logistic Regression (mixed model)	0.84
Random Forest	0.78
Extreme Gradient Boosting (XGBoost)	0.85

Novel study

• 1st study to assess impact of pharmacists on quality measure achievement using **machine learning**.

Baseline HbA1c most important feature

• Found to be the **most important** variable in determining if a patient meets HbA1c quality measure.

ML Model Performance and Interpretability

- XGBoost often outperforms RF in current literature (seen here).
- XGBoost is more challenging to both visualize and tune compared to RF.
- Logistic Regression did well! Works well with EHR data.

Conclusion

Including pharmacists in primary care clinics **significantly** improves diabetesrelated quality measure achievement.

Machine learning models, notably XGBoost, affirmed these results, emphasizing the importance of baseline HbA1c and time of the patient's index date in HbA1c control.

Area of Need / Future Research

Quality measures do not always accurately reflect the quality of care provided.

Diabetes care is complex, and a snapshot measure may not wholly capture the meaningful progress a patient makes under provider care.

There is a need for a new kind of quality measure for diabetes that accounts for patient heterogeneity.^

Use of AI / ML in Pharmacy Research ...

What N	IL method	should	be used?
		onoura	

• There are numerous ML methods that likely "fit the bill" ... focus on **communication** with stakeholders.

What kind of data do you have?

- RWD: EHR vs. Claims vs. unstructured?
- Large amounts of text vs. discrete/quantitative variables?

How do we make it matter?

- 2% of ML studies that address a clinical problem are **prospective**.
- Are clinicians going to see value in another retrospective tool?

Future of ML Research in Health Care?

- Attain buy in from medical stakeholders.
 - Clinicians, Administrators, IT, IRB, etc.
- Communicate value of ML methods early on.
- Be patient it takes time.

- Health systems should want to improve care enough to diligently collect AND share more socioeconomic variables.
- With ML, more variables = more learning

Need prospective evaluation of ML tools in health <u>care</u>.

There needs to be a greater willingness to focus on health disparities

CE Question #4

As the involvement of pharmacists in the direction of AI and ML in healthcare continues to evolve, which of the following statements is <u>TRUE</u> regarding the integration and value of ML studies?

- A) There is a singular ML method that is universally recommended for all healthcare problems, and it is important to rigidly adhere to this method.
- B) When determining the ML method to use, the primary emphasis should be on communication with stakeholders due to the existence of multiple ML methods that may be suitable.
- C) Real-world data (RWD) sources like EHRs, claims, and unstructured data are irrelevant considerations when choosing an ML method.
- D) Most ML studies addressing a clinical problem are retrospective, and clinicians universally recognize their value over prospective tools.

AI: Artificial Intelligence; ML: Machine Learning 35

Rx for Success: The Game-Changing Role of Pharmacists in Diabetes Quality Measures

Tyler D. Wagner, Pharm.D., Ph.D. Associate Director of Research National Pharmaceutical Council (NPC)